
Universality, non-Gaussian fluctuations and the
search for the QCD critical point

M. Stephanov

U. of Illinois at Chicago

Non-Gaussian fluctuations and QCD critical point – p. 1/16



QCD phase diagram (contemporary view)
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Models (and lattice) suggest crossover turns into 1st order at some µB .
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Location of the critical point vs freeze-out
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Estimates from lattice MC:

Systematic errors are not shown.

So far lattice results

disfavor µB < 200 MeV.

de Forcrand-Philipsen:

maybe µB > 500 MeV?

Strong lat. spacing dependence:

continuum limit is still far?

role of anomaly and “rooting”?

Wilson fermions might help.
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Location of the critical point vs freeze-out
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Location of the critical point vs freeze-out
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To discover the critical point
and establish its location, one needs:

Energy-scan experiments:

RHIC,

NA61(SHINE) @ SPS,

CBM @ FAIR/GSI,

NICA @ JINR

Improve lattice predictions
– understand systematic errors

Understand critical phenomena in
the dynamical environment of a h.i.c.
(understand background)
– develop optimal signatures
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Talk summary
Experiments measure for each event: multiplici-
ties Nπ, Np, . . . , momenta p, etc.
These quantities fluctuate event-by-event.

Typicall measure is stdev, e.g., 〈(δN)2〉.

What is the magnitude of these fluctuations
near the c.p.? (Rajagopal, Shuryak, M.S.) M(pT) (GeV/c)
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Universality tells how it grows at the critical point: 〈(δN)2〉 ∼ ξ2.
Correlation length is a universal measure of the “distance” from the c.p.
It diverges as ξ ∼ (∆µ or ∆T )−2/5 as the c.p. is approached.

Magnitude of ξ is limited < O(3 fm) (Berdnikov, Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ξ → ∞ fluctuations become less Gaussian (1/N effect).

Higher cumulants show even stronger dependence on ξ
(PRL 102:032301,2009):

〈(δN)3〉 ∼ ξ4.5, 〈(δN)4〉 − 3〈(δN)2〉2 ∼ ξ7

which makes them more sensitive signatures of the critical point.
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Critical mode and equilibrium fluctuations

µ > µE

µ = µE

µ < µE

〈σ2〉 ∼ (Ω′′)−1

σ
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think e−Ω:
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large equilibrium

(Ω′′)−1 → ∞
fluctuations

ψ̄ψ − 〈ψ̄ψ〉 ≡ σ

Magnitude of fluctuation and correlation length:

〈σ(x)σ(0)〉 ∼



e−|x|/ξ for |x| ≫ ξ

1/|x| for |x| ≪ ξ

〈σ2
0〉 =

Z

d3
x〈σ(x)σ(0)〉 ∼ ξ2

critical singularity is a collective
phenomenon

σ or nB or T 00? Because they mix, only one linear combination is critical.
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Fluctuations on the lattice

F. Karsch

σ
x 0

Baryon charge density - isoscalar.

Electric charge Q = I3 + B/2.

No peak in isospin (nonsinglet) sus-
ceptibility.
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Relation betweenσ fluctuations and observables
Consider example: fluctuations of multiplicity of pions (or protons).

Free gas: n0
p – fluctuating occupation number of momentum mode p.

Ensemble (event) average 〈n0
p〉 = fp and

n0
p = fp+δn0

p ; 〈δn0
pδn0

k〉 = f ′
pδpk ; fp = (eωp/T ∓ 1)−1; f ′

p ≡ fp(1 ± fp).

Couple these particles to σ field: Gσππ (or gσN̄N ).
Think of m2 ≡ m2

0 + 2Gσ as “fluctuating mass”. Then

δnp = δn0
p +

∂fp

∂m2
2Gσ = δn0

p +
f ′

p

ωp

G

T
σ

Using 〈δn0
pσ〉 = 0 and 〈σ2〉 = (T/V )ξ2.

〈δnpδnk〉 = f ′
pδpk +

1

V T

f ′
p

ωp

f ′
k

ωk

G2ξ2.

More formal derivation: PRD65:096008,2002
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4-point function

The 2-particle correlator measures 4-point function at q = 0 (for p 6= k).
Singularity appears at q = 0 due to vanishing σ screening mass mσ → 0.
(i.e., ξ = 1/mσ → ∞).

p p

k k

1
m2
σ

〈δnpδnk〉σ =
1

T

fp(1 + fp)

ωp

fk(1 + fk)

ωk

G2

m2
σ

.

Check: 〈δnpδnk〉 = 〈npnk〉 − 〈np〉〈nk〉 > 0 — as in attraction.
Attraction lowers the energy of a pair (making it more likely)
by 〈Hinteraction〉 ∼ forward scattering amplitude.

Consider baryon number susceptibility, which should diverge: χB ∼ ξ2−η

χB ∼ 〈δBδB〉σ = 〈(δNp − δNp̄ + δNn − δNn̄)2〉σ = 〈δNpδNp〉σ + . . .

Each term on r.h.s. is ∼
1

m2
σ

, ⇒ 〈δBδB〉 ∼ 1/m2
σ = ξ2.

It is enough to measure protons 〈δNpδNp〉 (Hatta, MS, PRL91:102003,2003)
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Limitations on ξ in heavy-ion collisions

How big can ξ grow?

Limited by:

Proximity of the critical point

Finite size of the system ξ < 6 fm.

Finite time: τ ∼ 10 fm.

Critical slowing down: τequillibration ∼ ξz.
z > 1 – dynamical critical exponent.

ξmax ∼ τ1/z ∼ (2 − 3)fm

Dynamic universality class of liquid-gas
phase transition, i.e., z ≈ 3:

— Critical mode – diffusive: ω ∼ iDq2,

— D =
λB

χB
→ 0 at c.p. 2 + 1 = 3.

(Son, MS, PRD70:056001,2004)
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(Berdnikov, Rajagopal,
PRD61:105017,2000)
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Higher moments (cumulants) of fluctuations
Consider probability distribution for the order-parameter field:

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω – effective potential:

Ω =

Z

d3x

»

1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

–

. ⇒ ξ = m−1
σ

Moments of zero-momentum mode σ0 ≡
R

d3x σ(x)/V .

κ2 = 〈σ2
0〉 =

T

V
ξ2 ; κ3 = 〈σ3

0〉 =
2λ3T

2

V 2
ξ6 ;

κ4 = 〈σ4
0〉c ≡ 〈σ4

0〉 − 〈σ2
0〉

2 =
6T 3

V 3
[2(λ3ξ)

2 − λ4] ξ
8 .

Tree graphs. Each zero-momentum propagator gives m−2
σ , i.e., ξ2.

+
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Moments of observables

Use multiplicity for an example. Since multiplicity is just the sum of all
occupation numbers, and thus

δN =
X

p
δnp ,

the cubic moment (skewness) of the pion multiplicity distribution is given by

〈(δN)3〉 =
X

p1

X

p2

X

p3

〈δnp1
δnp2

δnp3
〉 , where

P

p = V
R

d3p/(2π)3.

〈δnp1
δnp2

δnp3
〉σ =

2λ3

V 2T

„

G

m2
σ

«3 v2
p1

ωp1

v2
p2

ωp2

v2
p3

ωp3

v2
p = n̄p(1 ± n̄p)

Similarly for 〈(δN)4〉c.

Since 〈(δN)3〉 scales as V 1 it is convenient to normalize it by the mean
total multiplicity N̄ which scales similarly. Thus we define

ω3(N) ≡
〈(δN)3〉

N̄
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Moments of observables contd.

... and find

ω3(N)σ =
2λ3

T

G3

m6
σ

„
Z

p

v2
p

ωp

«3 „
Z

p

n̄p

«−1

.

Similarly, for

ω4(N) ≡
〈(δN)4〉c

N̄

from

3× +

we find

ω4(N)σ =
6

T

»

2
λ2

3

m2
σ

− λ4

–

G4

m8
σ

„
Z

p

v2
p

ωp

«4 „
Z

p
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«−1

.
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Scaling,λn

Scaling requires that both λ3 and λ4 vanish with a power of ξ given by:

λ3 = λ̃3T · (Tξ)−3/2, and λ4 = λ̃4 · (Tξ)−1, (η ≪ 1)

(because [(∇σ)2] = 3 ⇒ [σ] = 1/2 and ⇒ [λn] = 3 − n/2 )

Dimensionless couplings λ̃3 and λ̃4 are universal, and for the Ising univer-
sality class they have been measured on the lattice.

λ3 is nonzero:

crossover (λ̃3 = 0)

1st order

µB

T

contours of
equal ξ

critical point
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Estimates
Pions (top SPS):

ω3(Nπ)σ ≡
〈(δNπ)3〉

N̄π
≈ 1.

„

λ̃3

4.

« „

G

300 MeV

«3 „

ξ

3 fm

«9/2

ω4(Nπ)σ ≡
〈(δNπ)4〉c

N̄π
≈ 12.

„

2λ̃2
3 − λ̃4

50.

« „

G

300 MeV

«4 „

ξ

3 fm

«7

Protons (top SPS):

ω3(Np)σ ≡
〈(δNp)3〉

N̄p
≈ 3.

„

λ̃3

4.

«

“ g

10.

”3
„

ξ

1 fm

«9/2

ω4(Np)σ ≡
〈(δNp)4〉c

N̄p
≈ 23.

„

2λ̃2
3 − λ̃4

50.

«

“ g

10.

”4
„

ξ

1 fm

«7

Notes:

Strong dependence on ξ, compared to ω2 ∼ ξ2.

Significant uncertainty due to G, g.

Crosscheck: same exponents as baryon number cumulants from
scaling/universality:

〈(δNB)k〉c = V T k−1 ∂kP (T,µB)

∂µk

B

∼ ξk(5−η)/2−3. (η ≪ 1)

Non-Gaussian fluctuations and QCD critical point – p. 14/16



Concluding remarks I

Sign of ω3? Positive for Nπ and Np.

Crude argument:
(a) Nπ and Np are proxies for s and nB , and

(b) e.g., 〈(δS)3〉 = T 2 d2S
dT2 > 0 below C.P. because dS

dT
peaks (Asakawa et al).

Trivial background estimate: ω3(N)BE = (1 + np)(1 + 2np).

This is about 1.3 (≈ 1 + 3 np ) for pions at T = 120 MeV

ω4(N)BE/FD = (1 ± np)(1 ± 6np(1 ± np))

Note: ωk(Nπ+ + Nπ−)BE = ωk(Nπ+)BE – i.e., no cross-correlation.

In contrast, for the critical point contribution:

ωk(Nπ+ + Nπ−)σ = 2k−1 ωk(Nπ+)σ.
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Concluding remarks II

Measuring ω3 maybe be harder (more statistics needed?) than ω2.
More so for ω4 ∼ 〈(δN)4〉 − 3〈(δN)2〉2 = O(N2) −O(N2) ∼ O(N1).

Other, non-critical, sources contribute: remnants of initial fluctuations, flow,
jets – to name just a few.

Calculate and subtract background.

Apply kinematic cuts. (Low pt.)

Measure bkgnd during the energy scan.

STAR: background is small ω4 ≈ 1 (Poisson).

Non-Gaussian moments have stronger dependence on ξ, and thus are
more sensitive signatures of the critical point.
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